

Technical Presentation

August 2021

Developing Polymetallic Mines on the Korean peninsula

Management Team

Exploring in Korea as a Team for 25 years since 1995

Christopher Sennitt MSc Economic Geology, BSc Applied Geology, FAIG, SEG

- 38 years experience in Multi-Commodity Mineral Exploration & Mining throughout Asia & Australia
- Senior Corporate Management Roles: Indochina Goldfields, Oriental Minerals, Silk Road Resources, Metallica Minerals
- Specialist Project Generator & Vendor:
 - Lamboo Resources, Stonehenge Metals, International Gold/Southern Gold
 - Wandoo Gold, Mantle Mining, Calcifer Industrial Minerals
- Track Record of Definition of Major Mineral Resources in Korea:
 - Geumam graphite 5.5Mt @ 5.4% Cg; Sangdong W-Mo 61Mt @ 0.46% WO₃; Chubu U-V 46.8Mt @ 0.034% U₃O₈ & 0.3% V₂O₅
- Track Record of Mineral Discoveries:

Queensland: Mt Dromedary graphite 9.1Mt @ 12.5% Cg, Lighthouse 0.7Mt Hi-Purity QuartzChina: Bulagou Au-AgIndonesia: Seruyung 3.9Mt @ 2.8g/t Au (currently being mined), Lerokis 5.1Mt @ 4.2g/t Au, 125g/t Ag, 50% Ba (mined 1990-98)

Kim Wan Joong BSc Geology, KGS

- 26 years experience in Mineral Exploration, Company Management & Deal Negotiation in Korea
- Country Manager, Representative Director & Geologist Roles:
 - Oriental Minerals, Stonehenge Metals, Lamboo Resources, Indochina Goldfields
- Comprehensive knowledge of Korean Mining Act, Govt Regulations & Processes (inc "Permit to Mine")
- Track Record in Mineral Discoveries, Development & Mine Permitting in Korea:
 - Geumam graphite; Sangdong W-Mo-Bi (under development); Chubu U-V; Gasado Au-Ag & Eunsan-Moisan Au-Ag (mined)

Why South Korea ?

Strategic Location – North Asia Region

- Proximity to Major Markets
- Global Leader in Technology & Innovation
- Modern Liberal Democracy
- Legal System based on European Civil Law & US System
- **OECD country & G12 Group member**
- Developed, High-Income Country with Skilled workforce
- GDP per Capita US\$32,000
- Free Trade Agreements Australia, Canada & USA
- ***** Low Sovereign Risk (Veririsk Maplecroft, 2019)
- Low Credit Risk Ranked AA (Standard & Poors, 2019)
- Low Business Risk Ranked 5th (World Bank, 2018)

Taxation Regime:

- Corporate Tax Rate Progressive from 10-22%
- No Royalties on Minerals
- VAT 10%
- Losses carried forward for up to 10 years
- Depreciation of Assets (based on Useful Life)
 Foreign Investment Promotion Act ("FIPA")
- First 3-5 Years of Income is Tax Free
- Next 2 Years is 50% Exempt
- Tax Credits on Job Creation
- Guaranteed Repatriation of approved Capital

Polymetallic Mine Strategy

Mining Rights owned 100% via Korean subsidiary

KME - Private Australian Company

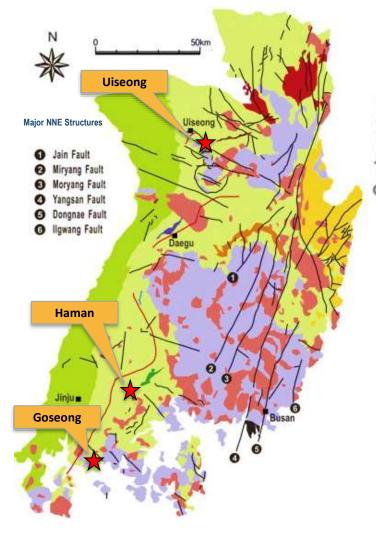
- 100%-owned Korean subsidiary holds Mining Rights
- Established Polymetallic Project Portfolio:
 - Uiseong Au-Cu-Zn-Pb-Ag ± Bi-In-W
 - Haman Cu-Ag-Au ± Co-W
 - Goseong Cu-Ag-Au ± Ge-Se-Bi
 - Jangheung Cu-Ag-Pb-Zn

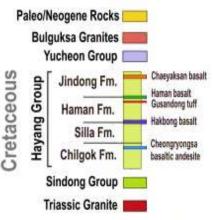
Historical Drilled Resources = ~4.5Moz AuEq

- "Drill-Ready" Resource Targets Low Exploration Risk
- High Grade Zones Low Development Risk
- Multiple Metals Natural Risk Hedge
- High Value Critical Metal By-products: Bi, In, W, Co

Base Metal Refineries – Onsan & Seokpo

- No Shipping Costs major cost saving
- Potential "Offtakers" of Concentrates


South Korea


- OECD & G12 Country Low Sovereign Risk
- Excellent Infrastructure
- Proximity to North Asia Region Markets
- Low Business Risk
- Leader in Technology & Innovation
- Embracing "Green Energy" Technologies & Economy

Gyeongsang Basin - Overview

KME holds "Regional Foothold" & Key Assets

Back-Arc Volcano-Sedimentary Basin:

Cycle 1 – Sindong Group

- Basin fault fanglomerate, floodplain & channel sediments
- "Red beds" humid climate

Cycle 2 – Hayang Group

- Alluvial plain and channel sediments
- Minor basalt and fanglomerates
- "Red beds", calcretes, evaporite facies arid climate

Cycle 3 – Yuchon Group

- Sub-basins formed & infilled with lacustrine sediments
- Volcanic Arc related to I-type igneous intrusions
- Early Andesite lavas and tuffs
- Late Rhyolite "surge" pyroclastics (diatremes & domes)

Basin Architecture:

- NNE Listric faults
- WNW directed Dextral Compression then WNW Transfer faults (Sinistral Extension)
- Back-Arc Sub-basins with local Volcanic Centers
- Associated with "Slab Tear & Trench Retreat" Migration of Japan-Kamchatka from Eurasia

Widespread Mineralization associated with Yuchon Group Volcanism:

- Mineralization Age Ranges 85 60 Ma
- Low-Sulphidation Epithermal Au-Ag (dome-related "Hishikari" style)
- Intermediate-Sulphidation Epithermal Au-Ag-Cu-Pb-Zn (dome-related)
- Chimney-Manto Skarn Cu-Pb-Zn-Ag (dome-related)
- Alkalic Porphyry Cu-Au (Adakite & Monzonite "pencil" porphyry)

"Drill Ready" Resource Targets

"Forgotten Resources" based on Historical Drilling of 1970-80s Low-Cost & Low-Risk Exploration ... KME just Re-Drills these Deposits

Mine / Deposit	Tonnes (t)	Grade AuEq (g/t)	Grade Au (g/t)	Grade Ag (g/t)	Grade Cu (%)	Grade Pb (%)	Grade Zn (%)
Dongil	9,234,500	4.65	1.19	44	0.96	1.05	1.05
Ogsan	3,006,300	10.61	1.32	61	3.24	3.95	1.50
Kyungwha	4,802,215	3.53	0.25	42	0.66	1.69	0.98
Jeonheung	2,470,655	4.06	1.90	39	0.46	0.66	0.73
Kumdongchilbo	1,320,770	4.03	0.88	33	0.00	2.05	1.73
TOTALS	20,834,440	5.13	1.06	44	1.10	1.63	1.12

Mine / Deposit	Tonnes (t)	Grade AuEq (g/t)	Grade Au (g/t)	Grade Ag (g/t)	Grade Cu (%)
Gunbuk	2,996,675	7.73	1.89	59	3.27
Ogok	436,535	15.29	7.59	20	4.77
Gilgok	620,194	2.73	0.86	10	1.12
Bukgok	1,027,381	0.95	0.25	7	0.39
Dundok	243,787	N/A	N/A	N/A	N/A
M Vein	949,781	0.77	N/A	N/A	0.49
Manse	404,250	11.13	N/A	577	2.26
Ebisu-Haman	868,003	2.20	0.24	11	1.17
TOTALS	7,546,556	5.27	1.32	58	2.04

Mine / Deposit	Tonnes (t)	Grade AuEq (g/t)	Grade Au (g/t)	Grade Ag (g/t)	Grade Cu (%)
Jinheung	345,000	22.26	2.30	546	8.18
SamsanJaeil	110,000	4.98	-	77	2.54
Samsan	45,500	6.04	-	194	2.23
Sambong	38,075	6.34	0.94	186	1.89
TOTALS	538,575	16.23	1.54	395	6.08

Uiseong Project - Copper-Gold-Zinc-Silver-Lead

- Byproducts: Bismuth-Cadmium-Indium-Tungsten
- Historical Mining: Jeonheung, Ogsan, Goroseoksan mines
- Historical Drilling: 1968-1983; 93 drill holes (14,500 metres)
- 4 deposits within 6km of Dongil

Haman Project - Copper-Gold-Silver

- Byproducts: Cobalt, Tungsten & Magnetite
- Historical Mining: 1915-1945 Haman, Gunbuk, Chaedung; 1963-1975 Jaeilgunbuk
- Historical Drilling: 1963-1980; 93 drill holes (20,076 metres)
- All deposits within 4km radius

Goseong Project - Copper-Gold-Silver

- Historical Mining: 1919-1945 Goseong; 1970-1992 Samsanjaeil, Sambong, Jinheung
- Historical Resources: KMPC Resource Estimates (see Table)
- Historical Drilling: 1968-1980; 58 drill holes (6,282 metres)

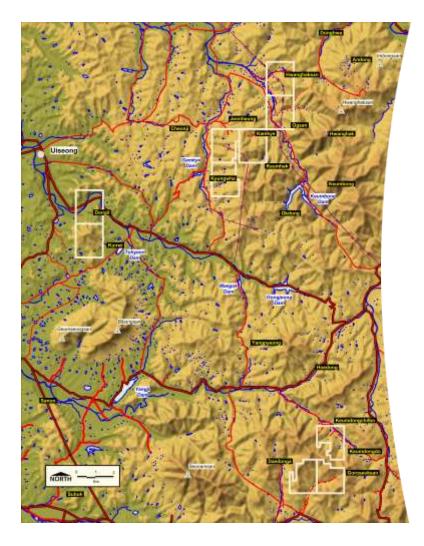
Investment Thesis

Developing Polymetallic Mines on the Korean peninsula

- **KME** is a Private Company with 100% owned Korean subsidiary
- Management Team Worked together for 25 years in South Korea
- Project Pipeline Held 100% under granted Mining Rights
- Low Risk Resource Targets Identified & Drill Ready
- Low Cost & Safe Mining "Sustainable Mining by Drilling"
- Low Cost & Eco-Friendly Processing "Continuous Vat Leach"
- Proposed Staged Development Program
 - 1. Raise US\$10M via equity issue in KME
 - 2. Confirmation & Infill Drilling of Historical Resource Targets
 - 3. Independent JORC Mineral Resource Estimates
 - 4. Complete Metallurgical Studies
 - 5. Complete Engineering Studies
 - 6. Preliminary Economic Assessment Report
 - 7. Environmental & Social Impact Assessment Study (12-months)
 - 8. Definitive Feasibility Study Dongil
 - 9. Permit to Mine Dongil
 - **10. Negotiate Offtake Agreement with Local Refineries**
 - **11. Construction of Mine Financing**

Uiseong Project

Au-Cu-Zn-Ag-Pb ± Bi-Sb-In-Cd-W



Uiseong – Location & Infrastructure

Location for Mining is Excellent

Uiseong County:

- Rural setting; 19 % farmland, 81% vacant forest
- Local economy is mainly agriculture-based; garlic, fruit
- Local population is ageing and declining
- Youth has moved to larger industrial cities for education & employment
- Very good road network excellent sealed road access
- Rail infrastructure (Jung-Angseon Railway Line)
- Numerous surface Water Storage Dams for agriculture/industry use
- Excellent "Baseload" Electrical Power Supply (Uljin Nuclear Power Station)
- Communications excellent cell phone & internet
- Local Government very supportive of new Developments for local economy
- Base Metal Refineries located only 60km from site
- Significant opportunity for Mining Development

Uiseong Town:

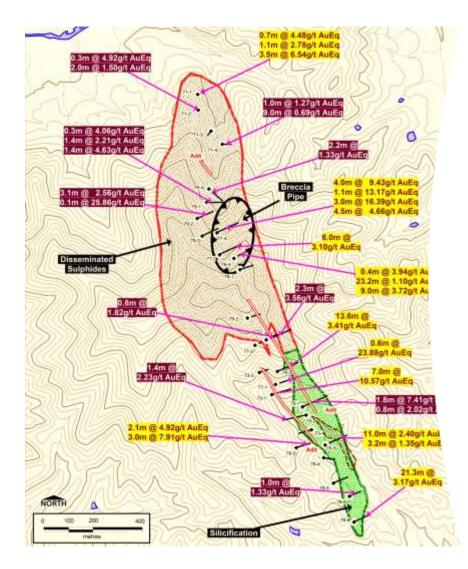
- 4 hours drive from Seoul to Uiseong by Jung-Ang Expressway
- Uiseong town population is 56,000 (2018), down from 200,000 (2000)
- Empty residences, shops, offices
- Good hotel-motel style accommodation
- Hardware & engineering workshops for servicing agriculture sector

Uiseong Tenure:

• 10 Granted Mining Rights covering 2,692ha held 100% by Shin Han Mines Inc

Uiseong – Dongil

Geology & Mineralization



- Breccia Pipe "Chimney"
- Sheeted Vein System: *East, Central & West Veins*
- Disseminated & Stockwork Fracture Sulphides

Uiseong – Dongil

Mineralized Intersections

Geology:

- Volcaniclastics, siltstone, black shale (Sagok Formation)
- Rhyodacite dome & Pyroclastic tuff breccia (Gusandong Tuff)
- Purple mudstones (Chunsan Formation)

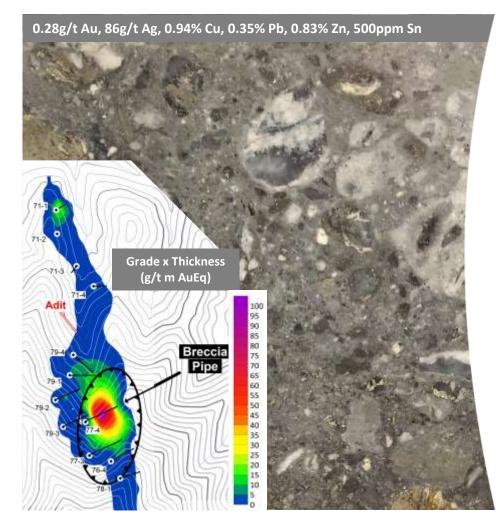
Database:

- 3 Historical Adits, Limited Mining
- Historical Drilling (conducted during 1971-1979):
- 28 Historical Drill Holes for 4,970 metres of thin AX/BQ core
- Drill Hole Spacing >100m
- Drill Logs recorded Veinlet Stockwork & Disseminated Sulphides
- Mineralization intersected over 2000m strike length x 300m wide zone

Sampling & Assaying Methodology by KMPC (1970s):

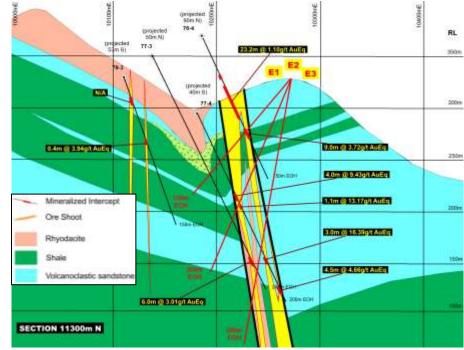
- Only obvious high-grade veins Assayed
- Only Pb & Zn were routinely Analyzed. Cu, Au, Ag not regularly Analyzed
- Veinlet & Disseminated Sulphides Not Assayed
- No downhole surveys, No SG data, No Core retained, No QA/QC Protocols

Resource Estimate (Senlac, 2017):

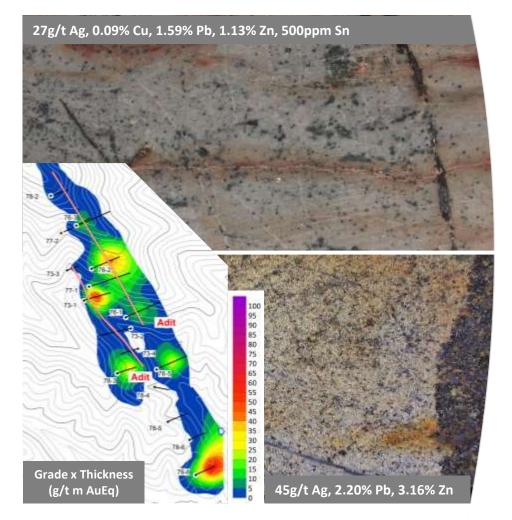

- Polygonal Method
- Confirmed by Geostatistical 3D Model (*GeoEconomics*, 2019)
- Geological Model NNW Striking, W-dipping Sheeted Vein System
- Historical data is not compliant with JORC/NI-43-101 Reporting Codes
- 9.23Mt @ 1.19g/t Au, 44g/t Ag, 0.96% Cu, 1.05% Pb, 1.05% Zn

KOREAN METALS

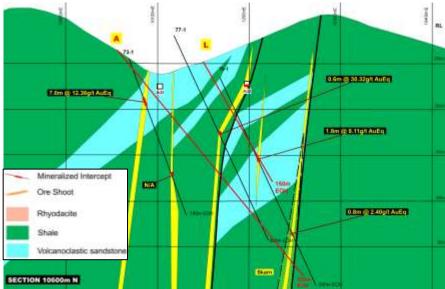
Uiseong – Dongil North


Drill Section 11300m North

"Chimney" Breccia Pipe:


- Elliptical-shaped Pipe-like Body, probably Steeply Plunging to SW
- Good high-grade Cu-Au Drill Intercepts
- Mineralization from Surface & Extends below >250m Vertical Depth
- Veinlet & Disseminated Sulphide Halo Not Assayed

Uiseong – Dongil South


Drill Section 10600m North

Stacked Sheeted Veins & Disseminated Sulphide Halos:

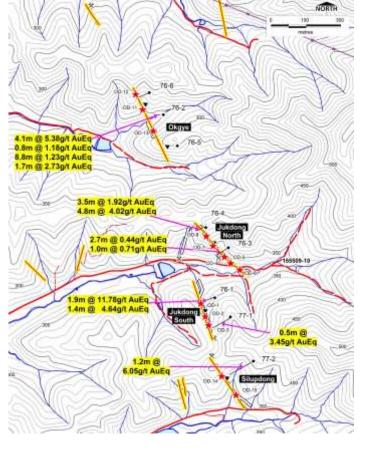
- Sheeted Veins (East, Central & West) & Stockwork System
- Veinlet & Disseminated Sulphides in Volcaniclastics Not Assayed
- Veinlet & Disseminated Sulphides in Rhyodacite Not Assayed
- Mineralization is "Open" up-dip to Surface
- Mineralization is Extends Down-dip >300m Depth

Uiseong – Kyungwha

Limited Historical Drill Testing

193g/t Ag, 0.81% Cu, 7.45% Pb

Geology:


- Siltstone, Shale, Marl (Sagok Formation)
- Volcaniclastics (Jeomgog Formation)
- NNW striking, steep E dipping Vein system
- Veins Traced over 1200m Strike Length
- Vein Widths up to 10.5m
- Stacked En Echelon Sheeted Vein Array

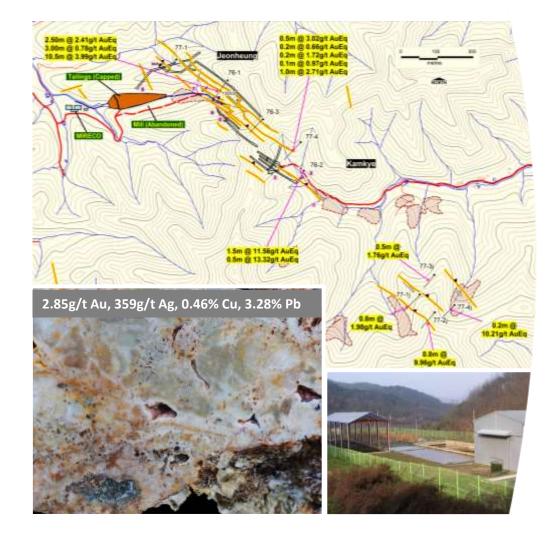
Historical Drilling:

- Limited Drilling (8 holes for 1,150m)
- Significant Drill Intercepts of Au & Ag
- Mineralized intercepts up to 9m wide
- Disseminated Sulphides Not Assayed
- Intercepts from 20m to >150m Depth

Mineralization:

- Argillic clay alteration
- Colloform banded chalcedony vein breccias
- Good Au, Ag & Cu grades hit in drill holes
- Veining localized at competent rock contacts
- Mineralization is "Open" in all directions

Resource Estimate (Senlac, 2017):


- 4.80Mt @ 0.25g/t Au, 42g/t Ag, 0.66% Cu, 1.69% Pb, 0.98% Zn
- Historical data is not compliant with JORC/NI-43-101 Reporting Codes

KOREAN METALS

Uiseong – Jeonheung

Historical Jeonheung Mine

Largest Mining Operation in Uiseong district

- 100tpd capacity Flotation Mill (1976-1988)
- 5 Adits & 200m deep Shaft
- AMD mine run-off Water Treatment Facility (MIRECO)

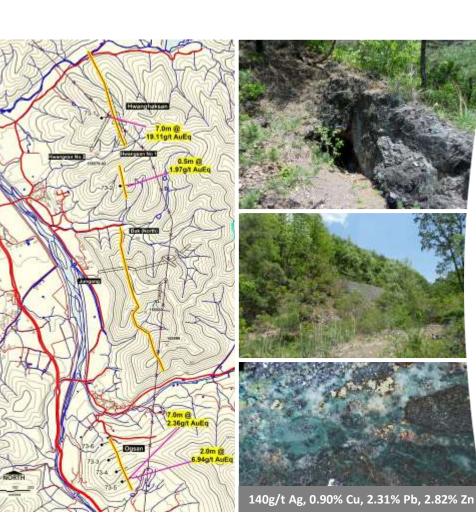
Geology:

- Black shale, sandstone (Jeomgog Formation)
- NW striking, steep NE dipping Vein system
- Veins traced over 900m Strike Length, may extend 400m to SE
- 5 x Stacked En Echelon Sheeted Vein Array

Historical Drilling:

- Limited Drilling (5 holes for 950metres BQ core)
- Significant Drill Intercepts of Au, Ag & Cu
- Mineralized intercepts up to 10.5m wide
- Disseminated Sulphide halo Not Assayed
- Veins intersected from 53m to below >250m Depth

Mineralization:


- Argillic clay alteration at surface
- Colloform banding, bladed carbonate pseudomorph textures
- Quartz vein breccias
- Au, Ag & Cu in drill holes

Resource Estimate (Senlac, 2017):

- 2.47Mt @ 1.90g/t Au, 39g/t Ag, 0.46% Cu, 0.67% Pb, 0.73% Zn
- 1.0Mt of Oxide Ore (KIGAM 1977; grade not specified)
- Historical data is not compliant with JORC/NI-43-101 Reporting Codes

Uiseong - Ogsan

Limited Historical Drill Testing

Geology:

- Chert, quartzite, sandstone (Jeomgog Formation)
- "Red bed" sandstone, siltstone, shale (Sagok Formation)
- NNW striking, steep W dipping Vein
- Traced over 3000m Strike Length & up to 7m Wide.
- Probable NE Fault offsets of Vein
- New Vein Breccia Discovered at T9 Anomaly

Historical Drilling:

- Limited Drilling (6 holes for 650m)
- Significant Drill Intercepts of Au, Ag, Cu, Pb, Zn
- Mineralized intercepts up to 7m wide
- Disseminated Sulphide halo Not Assayed
- Veins intersected from 22m to below >120m Vertical Depth

Mineralization:

- Argillic clay alteration at surface
- Amethystine zonal quartz & Comb quartz vein breccias
- Good Au, Ag & Cu grades in drill holes
- Mineralization is "Open" in all directions
- "Chert" & "Quartzite" logged probably Silica Alteration

Resource Estimate (Senlac, 2017):

- 3.00Mt @ 1.32g/t Au, 61g/t Ag, 3.24% Cu, 3.95% Pb, 1.60% Zn
- Historical data is not compliant with JORC/NI-43-101 Reporting Codes

KOREAN METALS

Uiseong – Goroseoksan & Keumdongchilbo

Monzonite Intrusion Host

Keumdongchilbo:

- NNW striking, steep E dip; 900m Strike Length
- At least 4 subparallel Veins within 25m Wide Zone
- Prominent Magnetic Low Anomaly
- Monzonite porphyry host (actinolite-quartz altered, xenolithic)

Goroseoksan:

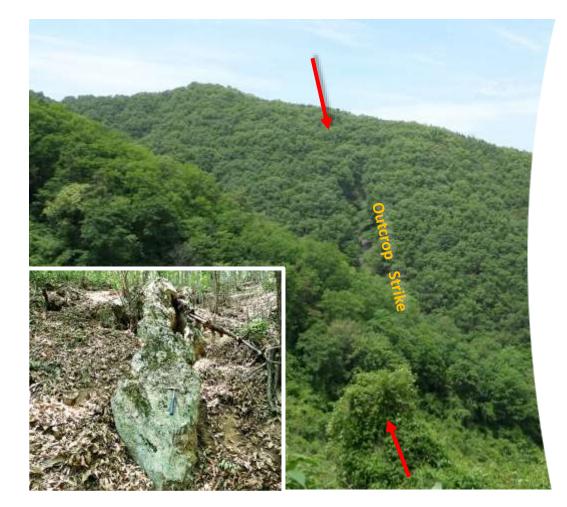
- Single N-S striking, steep W dipping Vein, 4.0m Wide
- Tourmaline magmatic intrusion breccia in Monzonite porphyry
- Mine run-off Water Treatment Facility (MIRECO)
- Never Drilled

Historical Drilling at Keumdongchilbo only:

- Limited Drilling (8 holes for 1600m)
- Significant Drill Intercepts of Au, Ag, Pb, Zn
- Cu Never Assayed...BUT IS PRESENT
- Mineralized intercepts up to 17.1m wide
- Disseminated Sulphide halo Not Assayed
- Veins extend down below >450m Vertical Depth

Mineralization:

- Hydrothermal Magmatic Intrusion Breccias
- Good Au, Ag, Cu, Pb, Zn grades
- Mineralization is "Open" in all directions


Resource Estimate (Senlac, 2017):

- 1.23Mt @ 0.94g/t Au, 35g/t Ag, N/A Cu, 2.19% Pb, 1.85% Zn
- Historical data is not compliant with JORC/NI-43-101 Reporting Codes

Uiseong - Exploration Potential

New Discoveries made by KME

Exploration by KME since 2015:

- Reconnaissance Geological Mapping & Sampling
- Recognition of new Geological Models
- New Veins Discovered S of Jeonheung & E of Kyungwha
- Au-Ag-W geochemical signature
- Bladed Carbonate Replacement "Boiling" Textures

Uiseong – Geological Model

Intermediate-Sulphidation Epithermal Au-Ag-Cu-Pb-Zn

Mineralization Style:

- NNW-striking, Sheeted, En Echelon Vein arrays
- "Chimney" Breccia Pipe "feeder pipes"
- Surrounding Halo of Stockworks & Disseminated Sulphides
- Skarn-hornfels zones High heat flow structures

Mineralized Structures:

- Strike extensive: 1000 3000 metres strike length
- Extend down to vertical depths of >450m

Early Stage:

High-temperature (250-350°C), Moderate salinity fluids (1-10 wt% NaCl) deposited quartz veining, Fe-rich sphalerite, disseminated Cu-Zn-Pb-Fe-As sulphides, Fe-poor sphalerite

Middle Stage:

Boiling and over-pressuring breccia event

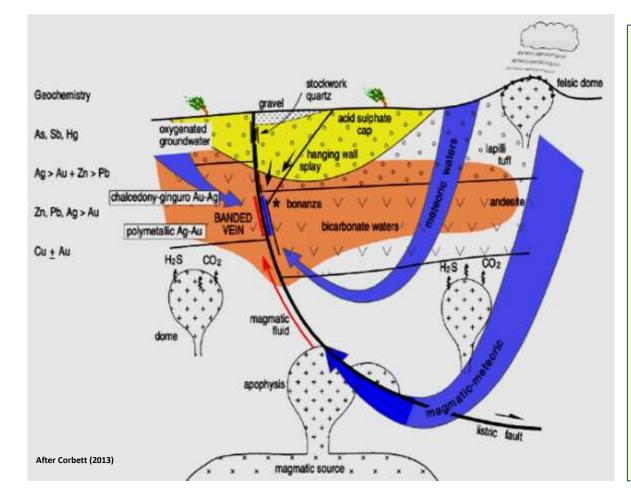
Late Stage:

Mixing, Dilution and Cooling with Oxygenated Meteoric Waters deposited Au-Ag and Ag-Sb-Bi sulphosalts at low temperatures (200-300°C)

Mineralization Age:

78-60 Ma. Hydrothermal system may have been active for 18 million years

Classification: Intermediate-Sulphidation Epithermal (5-10% S)


Deposited at shallow-deep epithermal depth (200-1000m)

Analogues: Zacatecas & Fresnilo district Mexico

Uiseong – Geological Model

Intermediate-Sulphidation Epithermal Au-Ag-Cu-Pb-Zn

Geology:

- Felsic dome intrusion
- Diatreme venting lapilli tuff, pyroclastics

Vertical Geochemical Zonation:

- As, Sb, Bi, Hg, Ba near palaeosurface
- Ag (Ag:Au ratio >100)
- Au banded quartz vein "Bonanza" grades
- Zn, Pb ± In-Ga-Cd
- Cu, Au
- W ± Sn

Alteration Zonation:

- Acid Sulphate assemblage cap at surface
 - Alunite, jarosite, kaolinite, dickite, hematite
- Argillic assemblage at water table
 - Hematite (thermal oxidation)
 - Kaolinite, dickite, illite, smectite clays
- Inner Propyllitic assemblage near veins
 - Epidote, chlorite, sericite, pyrite
 - Skarn (high heat flow structures)
- Outer Propylitic assemblage at depth
 - Chlorite

Haman Project

Cu-Ag-Au ± Co-W

Haman – Location & Infrastructure

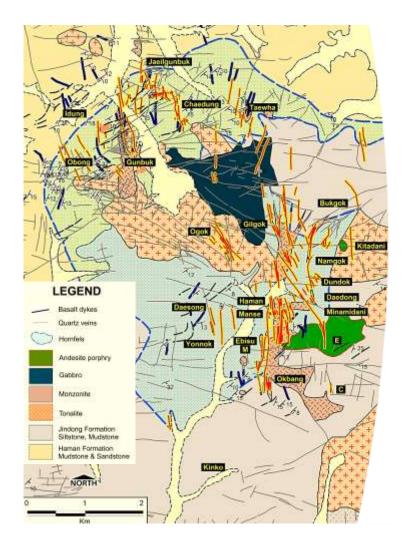
Haman-Gun County:

- Mountainous rural setting, mainly Vacant Forest
- Local economy is mainly agriculture-based; watermelon fruit & forestry logging
- Local population is ageing
- Youth has moved to industrial cities for education & employment
- Good road network sealed & logging road access
- Rail infrastructure (Kwangju-Busan Railway Line)
- Perennial tributaries of the Namgang River drain the project area
- Several surface Water Storage Dams for agriculture use
- Mild climate hot & wet in summer, winter snowfalls are uncommon
- Baseload electrical power supply
- Communications is excellent (cell phone & internet)
- Local Government very supportive of new Developments
- Base Metal Refineries located 100km from site
- Significant opportunity for Mining Development

Gaya Town:

- 5 hours drive from Seoul to Gaya via Namhae Expressway
- Gaya is 15 minutes drive from project area
- Gaya town population is 63,435 (2018) and declining
- Empty residences, shops, offices
- Reasonable hotel-motel style accommodation
- Heavy Industrial Machinery Real Estate Complex

Haman Tenure:


• 11 Granted Mining Rights covering 3,022ha held 100% by Shin Han Mines Inc

KOREAN METALS

Haman - Geology

EXPLORATION

Geology of the Haman District

Historical Mining Activities:

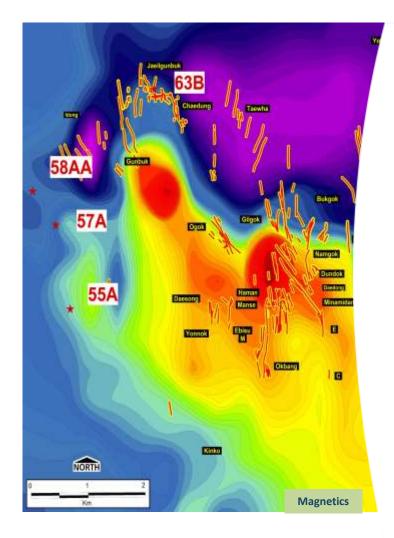
- Principal copper producing region of South Korea; 1915-1945 & 1968-1975
- 20 historical mines & workings
- Flotation Mills: Gunbuk (100tpd), Haman (50tpd) & Jaeilgunbuk
- Recorded Production: 110,000t @ 5.59% Cu, 11.55g/t Au, 59g/t Ag + 11t of Co

Geology:

Hayang Group Sequence

- Mudstone & Sandstone (Haman Formation) altered to "chert" silicification !
- Siltstone, Mudstone (Jindong Formation)

Intrusion Sequence:

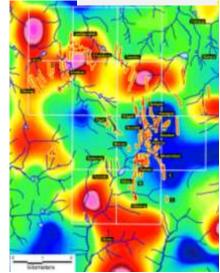

■ Tonalite Adakite → Gabbro → Monzonite porphyry → Andesite porphyry

Haman - Geophysics

Geophysical Anomalies

Historical Exploration Activities:

- KMPC drilled 93 holes for 20,076 metres AX core (1968-1981)
 - Au & Ag Not Assayed in 1970, 1971, 1975 or 1976 Drill Programs
 - No Drill Core available
 - No QA/QC protocols
- Heliborne EM & Magnetometer Survey Sanders Geophysics (1975)
- Radiometric & Magnetometer Survey 1km line spacing (1989-1991)
- Self Potential Geophysical Surveys


Geophysical Anomalies:

- Sanders Geophysics (1975) data re-processed by KME
- "Bulls eye" Magnetic Anomalies with N-S "Tails"
 - Gunbuk-Oguk
 - Gilgok-Haman
 - Coincide with Monzonite "pencil" porphyry
- Veins located on Margins of Magnetic Anomalies
- EM Anomalies on Margin of Monzonite

Self Potential Geophysical Surveys:

- Grids at Gunbuk-Jaeilgunbuk, Haman-Gilgok.
- Narrow Anomalies coincide with Veins
- Larger Anomalies (Disseminated Sulphides):
 - Gunbuk South
 - Jaeilgunbuk
 - Gilgok

K-Channel Radiometrics

Haman – Gunbuk

High-Grade Resource Target

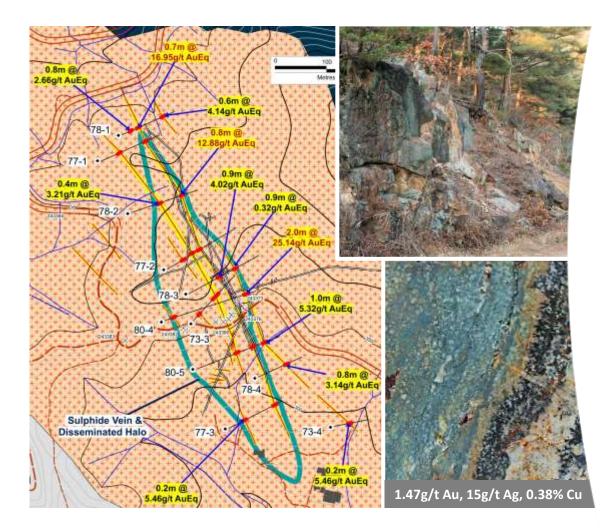
Gunbuk Mine:

- Copper producer 1938-1945 and 1968-1975
- Flotation mill
- Main Vein "stoped out" down to 3rd Level (5masl)
- Daesin Vein "missed" by Japanese
- Prospecting down to 6th Level -71masl
- Main Vein Resource below -75MASL is "Open"

Au-Ag-Cu ± Co-W Mineralization:

- Chalcopyrite, Pyrite, Pyrrhotite, Arsenopyrite
- Sulphosalts, Electrum, Wolframite, Cobaltite
- Vein Gangue Minerals:
 - Quartz, Magnetite, Specularite, Tourmaline, Carbonate
- Hydro-fracture Stockwork halo is Mineralized
- Evaporite facies in sediments ... brine fluid source ?

Main Adit: Access is open to Main Level (92masl)


Resource Targets:

- 3.00Mt @ 1.89g/t Au, 59g/t Ag, 3.27% Cu
 - The *Daesin Vein* is a High-Grade Exploration Target
 - Historical data is not compliant with JORC/NI-43-101 Reporting Codes
- Bulk tonnage Exploration Target to south
 - SP Conductor Anomaly
 - Monzonite porphyry + disseminated sulphides

Haman – Oguk

High-Grade Resource Target

Geology:

- Tonalite (Adakite) and Monzonite host
- Gabbro contact in NE

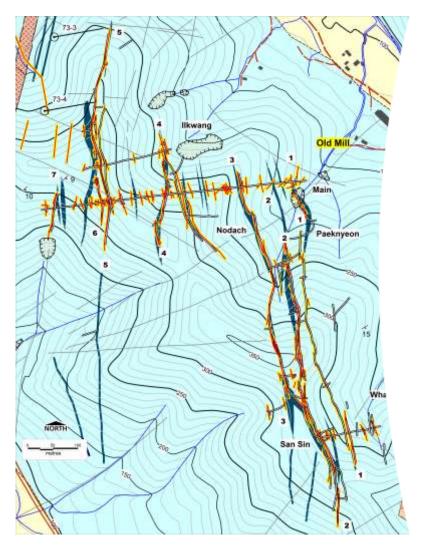
Au-Ag-Cu ± Co-W Mineralization:

- Chalcopyrite, Pyrite, Pyrrhotite, Arsenopyrite
- Sulphosalts, Wolframite, Cobaltite
- Quartz, Magnetite, Specularite, Tourmaline, Carbonate
- Disseminated Sulphides & Veinlets Not Assayed

Alteration:

- Albite-Biotite-Magnetite
- Magnetite-Actinolite-Tourmaline

Geophysics:


"Bullseye" Magnetic anomaly

Resource Estimate (Sennitt, 2017):

- 0.44Mt @ 7.59g/t Au, 20g/t Ag, 4.77% Cu
- Historical data is not compliant with JORC/NI-43-101 Reporting Codes
- High-Grade Resource Target
- Bulk Tonnage Exploration Target

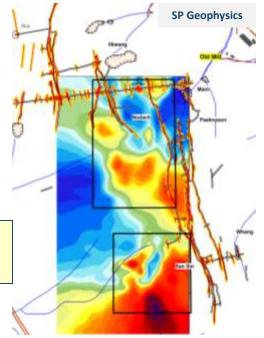
Haman – Jaeilgunbuk

Bulk Tonnage Gold Exploration Target

Jaeilgunbuk Mine:

- Small flotation mill operated 1963-1975. Processed ore from 6 "prospecting adits"
- Only limited production recorded: 30,000t @ 19.71g/t Au, 90g/t Ag & 7.19% Cu

Geology:


- Sheeted Au-Cu-W Vein-Fracture stockwork System
- 960m long x 500m wide area
- Siltstone (Haman Formation)
- Mafic dyke swarm intrudes siltstone
- Close association of veins with dykes

Geophysical Response:

- SP Anomalies coincide with Veins
- Large SP Anomaly in south interpreted as disseminated sulphides
- EM Anomaly
- Magnetic Low
- K-Channel Radiometric Anomaly

Bulk Tonnage Exploration Target

Never Drilled !

KOREAN METALS

Haman – Jaeilgunbuk

Bulk Tonnage Gold Exploration Target

12.15g/t Au, 0.33% Cu, 146ppm Co, 277ppm W, 406ppm As

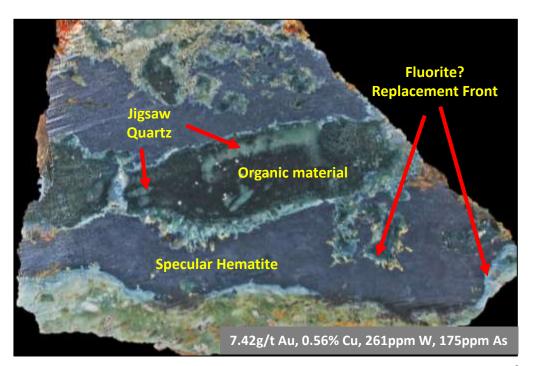
Sheeted Vein-Fracture stockwork System

- 960m long x 500m wide area
- Mafic dyke swarm intrudes siltstone (Haman Formation)
- Close association of veins with dyke structures

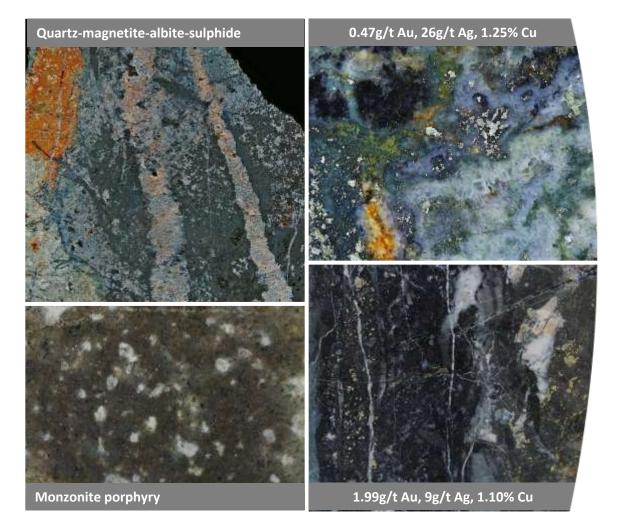
Au-Cu-W Breccia Vein Mineralization:

- Early Magnetite-Specularite
- Jigsaw Quartz (recrystallized amorphous quartz)
- Late Pyrite-Chalcopyrite-Pyrrhotite-Wolframite

Haman – Jaeilgunbuk



Sediment-hosted Replacement Style Mineralization


Unusual Au-Cu-W-As Replacive Style Mineralization:

- Siltstone, Sandstone host (Haman Formation)
- Early Specularite alteration
- Fluorite with carbonate rim forms a replacive front
- Organic material/debris being swept & assimilated
- Jigsaw-textured quartz (recrystallization of amorphous silica)

Haman – Geological Model

Alkalic Porphyry Cu-Au model

Multi-phase, evolved intrusive complex:

KOREAN METALS EXPLORATION

- Tonalite (Adakite)
- Gabbro
- Monzonite "pencil" porphyry

Au-Ag-Cu ± Co-W Mineralization:

- Chalcopyrite, Pyrite, Pyrrhotite, Arsenopyrite
- Sulphosalts, Wolframite, Cobaltite
- Quartz, Magnetite, Specularite, Tourmaline, Carbonate, Jarosite
- Copper transported as chloride complex

Calcic Potassic alteration assemblage:

Albite, Biotite, Magnetite, K-feldspar

Inner Propyllitic alteration assemblage:

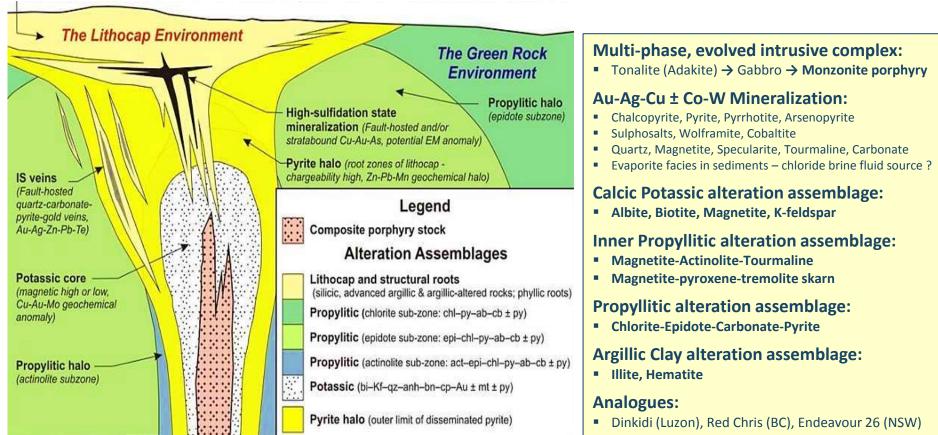
- Magnetite-Actinolite-Tourmaline
- Magnetite-Pyroxene-Tremolite Skarn

Silicification-Hornfelsing:

- "Chert" silica replacement of evaporite facies
- Chloride brine fluid source ?

Propyllitic alteration assemblage:

Chlorite-Epidote-Carbonate-Pyrite

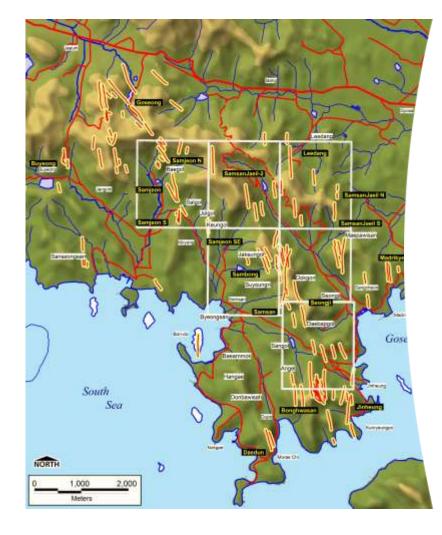

Argillic Clay alteration assemblage:

Illite, Hematite

Haman – Geological Model

Alkalic Porphyry Cu-Au model

Goseong Project Cu-Ag-Au



Goseong – Location & Infrastructure

Goseong Town & County:

- Mountainous coastal setting, mild climate (snowfall is uncommon)
- Local economy is dominated by agriculture, fishing & shipbuilding
- Sealed road & forestry road access
- Several surface Water Storage Dams for agriculture use
- Communications is excellent (cell phone & internet)
- Base Metal Refineries located 100km from site
- 5 hours drive from Seoul to Goseong via Tongyeong Expressway
- Goseong town is 15 minutes drive from project area
- Goseong town population is 55,950 (2018)
- Modern shops, offices, apartments, houses, hotel-motel style accommodation

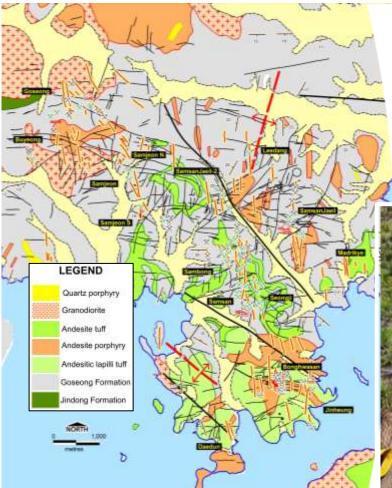
Historical Mining Activities:

- Copper producing region 1915-1945 and again 1970-1992 (11 mines)
- Flotation Mills: Goseong (50tpd), Samsanjaeil (130tpd), Samsan & Jinheung (100tpd)
- Recorded Production: 216,512t @ 2.94% Cu, 0.17g/t Au, 34g/t Ag

Goseong Tenure:

3 Granted Mining Rights

Historical Resource Estimate (KMPC 1980-1994):


Combined Jinheung, Samsanjaeil, Samsan, Sambong & Buyeong "Mine Reserves":

- 0.58Mt @ 1.62g/t Au, 370g/t Ag, 5.45% Cu
- Historical data is not compliant with JORC/NI-43-101 Reporting Codes

Goseong – Geology

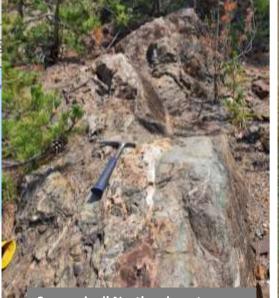
Historical Mining District

Geology:

Hayang Group Sequence

Siltstone, Mudstone basement (Jindong Formation)

Yuchon Group Sequence

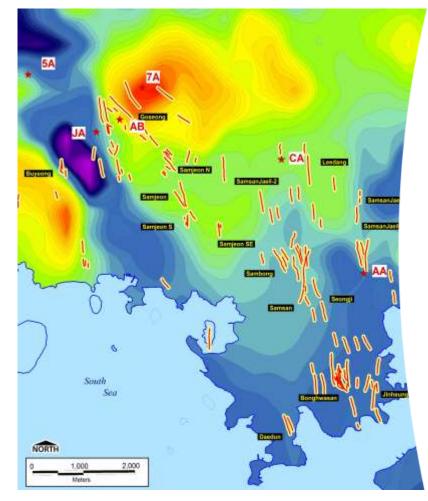

- Siltstone, Mudstone (Goseong Formation)
- Andesite tuffs (Jusasan Andesite)
- Interpreted maar collapse environment

Intrusions:

Granodiorite, Monzonite porphyry (plug) & Andesite porphyry (dome)

Mineralization:

>50 Veins mapped



Seongji Vein in adit roof

Goseong – Geophysics

Geophysical Surveys

Historical Exploration Activities:

- KMPC drilled 64 holes for 6,282 metres AX core (1970-1980)
 - Only Cu routinely assayed
 - No Drill Core available
 - No QA/QC protocols
 - No drill logs available
- Heliborne EM & Magnetometer Survey (Sanders Geophysics, 1975)
- Radiometric-Magnetometer Survey 1km line spacing (KIGAM, 1989-1991)
- Self Potential Geophysical Surveys

Geophysical Anomalies:

- Sanders Geophysics 1975 survey data re-processed by KME
- "Bulls eye" Magnetic Anomaly at Goseong Monzonite porphyry
- Elongate N-S Magnetic Anomaly south of Buyeong
- Prominent NW-SE Magnetic Low "Corridor" between Goseong-Buyeong
- EM Anomalies at Goseong, Leedang (CA) & Samsanjaeil South (AA)
- Large K-Channel Radiometric Anomalies (phyllic alteration):
 - Samjeon group of mines
 - Sambong-Samsan-Seongji-Bongwhasan

Self Potential Geophysical Surveys:

- Buyeong, Goseong-Samsan, Jinheung, Sambong West, Leedang & Samsanjaeil
- Numerous small Chargeability Anomalies coincide with Veins
- Larger SP Anomalies interpreted as Disseminated Sulphides

Goseong – Samjeon

Bulk Tonnage Exploration Target

Geology:

NNW striking, steep Dipping Sheeted Vein stockwork Developed over 500m long x 300m wide area

- Andesite porphyry dome intrusion emplaced into mudstone & siltstone (Goseong Formation)
- Chlorite-pyrite-silica alteration
- Argillic alteration
- "Red Soil" Colour Anomaly
- Quartz-Alunite Acid Sulphate Alteration

Mineralization:

- Epithermal Quartz Vein breccias
- Colloform, comb, crustiform, jigsaw quartz vein textures with chalcedony veins & colloidal silica
- Au-Ag-Cu-As-Bi-Sb-Co-Pb-Zn mineralization
- Splay veins & strong veinlet stockwork

Geophysics:

- K-Channel Radiometric Anomaly
- U-Channel Radiometric Anomaly

Exploration Potential:

- Only limited drilling, no drill logs or assay data
- Poor drill hole siting at Samjeon Central
- Adits are still Open & accessible
- Bulk Tonnage Exploration Target
- High-Grade Epithermal Mineralization potential

Goseong – Sambong-Seongji-Samsan

High Grade Exploration Target

Geology:

NNW striking, steep Dipping Sheeted Vein stockwork Developed over 3,500m long x 900m wide area

- Sambong mine was largest producer (1969-1985)
- Historical Flotation Mill at Samsan
- MIRECO water treatment facility
- Andesite tuffs (Jusasan Andesite)
- Mudstone & siltstone (Goseong Formation)
- Chlorite-pyrite-silica alteration

Mineralization:

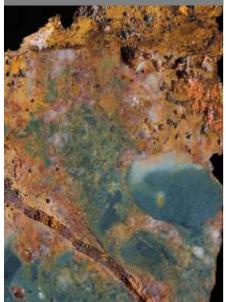

- Comb quartz veins & chalcedony veins
- Vein widths up to 2.00m
- Vertical zonation geochemical pattern recognized:
 - Pb-Zn shallow level, Cu-Ag increasing with depth

Exploration Potential:

- Only limited drilling, no drill logs or assay data
- Adits are still Open & accessible
- Cu & Ag were assayed, but only limited Au assays
- SP Geophysical Survey at Sambong chargeability Anomalies coincidental with Vein structures
- K-Channel Radiometric Anomaly peak over Sambong
- Vein dips appear to merge & coalesce at depth.
 Potential for High-Grade Exploration Target

Goseong – Bongwhasan & Jinheung

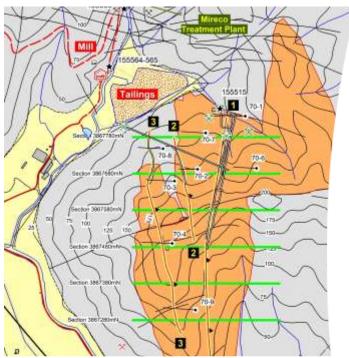
High-Grade & Bulk Tonnage Exploration Target


NNW striking Sheeted Veins 1,200m Long x 2,000m Wide area

- Historical 100tpd Flotation Mill at Jinheung
- Andesite-feldspar porphyry, tuffs (Jusasan Andesite)
- Mudstone & siltstone (Goseong Formation)
- Amethystine quartz-hematite, jigsaw-crackle cataclastic brecciation with prismatic zonal cockade quartz infill
- Au-Ag-Cu-As-Bi-Mo-Pb-Zn mineralization
- Argillic clay-hematite-jarosite alteration

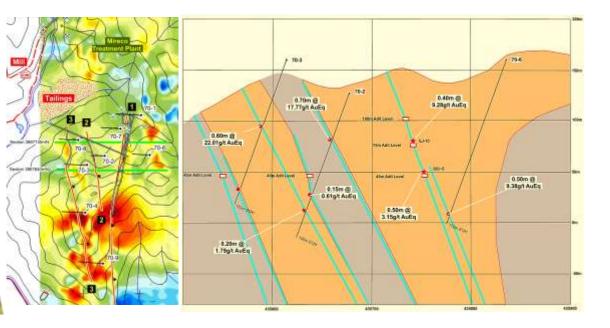
Exploration Potential:

- Only limited drilling, no drill logs, assays for Cu, Ag only
- Adits are still Open & accessible
- K-Channel Radiometric Anomaly over Jinheung
- SP chargeability anomalies coincidental with veins
- High-Grade "Bonanza" Target Merging of Veins
- Bulk Tonnage Target indicated by Density of Stockworks


1.20g/t Au, 197g/t Ag, 0.29% Cu

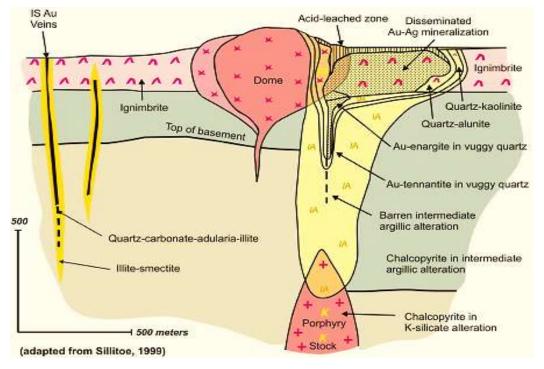
Goseong – Samsanjaeil South

Bulk Tonnage Exploration Target



N-S striking, Sheeted Vein system over 1300m Long x 200m Wide

- Historical 130tpd Flotation Mill
- AMD Water Treatment Facility (Mirecco)
- Adits are flooded at 75masl Level
- Andesite porphyry dome intrusion into mudstone, siltstone (Goseong Fm)
- "Jigsaw" & comb textured quartz & colloidal silica (Epithermal)
- EM Conductor & Large SP Chargeability Geophysical Anomalies
- Capped Tailings Potential for Re-processing
- Bulk Tonnage Target indicated by Limited Drilling



Goseong – Geological Model

Transitional IS Epithermal – Alkalic Porphyry Cu-Au

Geological Environment:

- Mudstone, siltstone (Goseong Formation)
- Andesite lavas, tuffs, lapilli tuff (Jusasan Andesite)
- Andesite Sediment Contact Hishikari Model
- Post-collapse Maar setting

Multi-phase, evolved intrusion:

- Monzonite/Quartz porphyry
- Andesite porphyry dome

Au-Ag-Cu Mineralization:

- Chalcopyrite, pyrite, pyrrhotite, arsenopyrite
- Bi, Co, Pb, Zn ± In-Ga-Ge
- Cu-Au-Ag ± Te-Se

Inner Propyllitic alteration assemblage:

Actinolite-tourmaline- magnetite-chlorite (Fe)

Outer Propyllitic alteration assemblage:

Chlorite-epidote-hematite-carbonate

Argillic Clay alteration assemblage:

Illite, hematite

Advanced Argillic alteration assemblage:

Alunite, quartz, jarosite, hematite

Analogues:

Dinkidi (Luzon) & Hishikari (Japan)

Jangheung Project

Cu-Ag-Zn-Pb

5

Jangheung – Location & Infrastructure

Location for Mining is Good

Jangheung Town & County:

- Mountainous coastal setting, mild climate (snowfall is uncommon)
- Local economy is dominated by cattle feedlot, agriculture & fishing
- Sealed road & forestry road access
- Several surface Water Storage Dams for agriculture use
- Communications is excellent (cell phone & internet)
- 3.5 hours drive from Seoul to Jangheung via Suncheon Expressway
- Jangheung town is 15 minutes drive from project area
- Jangheung town population is 53,392
- Modern shops, offices, apartments, houses, hotel-motel style accommodation

Historical Exploration:

The Korean Institute of Energy Resources explored the area 1971-1982. KIER and discovered:

- 'Cluster' of 16 Breccia Pipes, related to Diorite Porphyry intrusion
- Pipes display subvertical 'inverted cone', 'carrot-shaped' morphology
- Only 3 pipes were drill-tested (12 holes for 1,524 metres)
- Ag not assayed in core but is significant (>100g/t Ag) in rock chips
- Bulk sample assayed 1.12% Cu, 5.43% Pb, 4.30% Zn, 143g/t Ag

Jangheung Tenure:

Application Rights for 4 Mining Rights. In process to Granted status.

Exploration Potential:

- Most of the Breccia Pipes are un-explored and remain open
- More 'blind' pipes can be expected

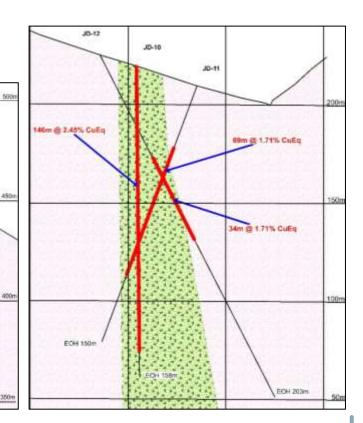
Jangheung - Polymetallic Breccia Pipes

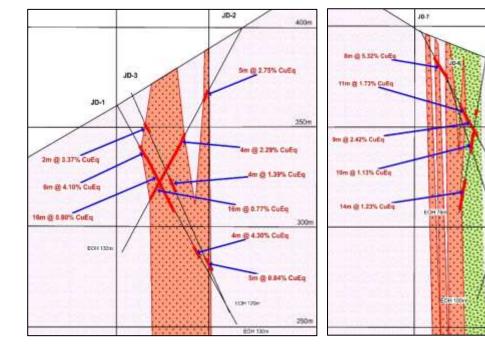
.0-4

7m @ 1.80% CuEq

ECH Libro

Historical Drill Intersections:

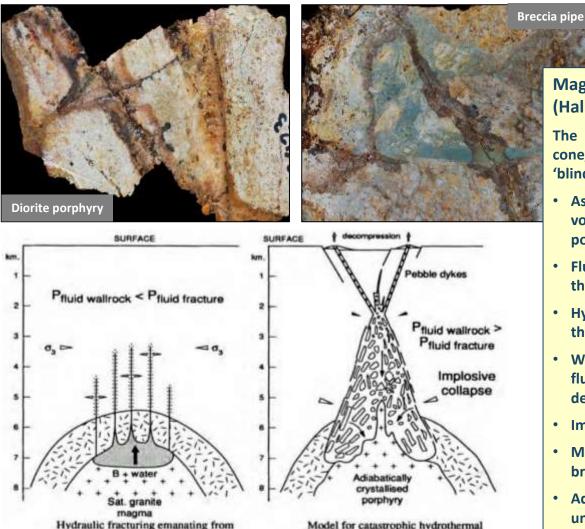

Intersection	CuEq (%)	Hole ID	Interval	Breccia ID	Cu (%)	Pb (%)	Zn (%)
146m	2.45	JD-10	0 - 146m	Anomaly B	0.44	0.26	4.87
69m	1.71	JD-11	33 - 102m	Anomaly B	0.21	0.09	3.73
34m	1.71	JD-12	71 - 105m	Anomaly B	0.28	0.19	3.47
8m	5.32	JD-7	16 - 24m	Anomaly E	1.27	6.03	4.80
9m	2.42	JD-7	53 - 62m	Anomaly E	1.10	1.27	2.20
6m	4.10	JD-1	23 - 29m	Anomaly I	0.16	2.85	7.40


CuEq was calculated using April 2016 metal prices of: Cu = US\$2.18/lb, Pb = US\$0.78/lb, Zn = US\$0.86/lb

Historical Resource Estimate:

KIER (1982) estimated an "inferred mineral resource" of:

- 1Mt @ 5% combined Cu-Pb-Zn
- This resource estimate is historical and is not compliant with the current JORC reporting code.



Jangheung – Geological Model

Magmatic-Hydrothermal Breccia Pipe Model

a boron-rich granite cupola

Model for catastrophic hydrothermal brecciation at hypabyssal levels

Magmatic-Hydrothermal Breccia Pipe Model (Halls, 1994)

The breccia pipe is developed as an inverted cone/carrot-shaped body, sitting above an inferred 'blind' porphyry intrusion at depth.

- As the granite magma rises, boron-rich fluids and volatiles accumulate in the cupola of the (diorite porphyry) intrusion.
- Fluid pressures build up in the overlying rocks as the (diorite porphyry) intrusion rises.
- Hydraulic fracturing "ring fractures" form around the pipe, propagate and then penetrate upwards.
- When fluid pressures in the wallrocks exceed the fluid pressures in the overlying fractures, sudden decompression occurs.
- Implosive collapse follows decompression event.
- Mineralization is deposited in void spaces in the breccia. Best grades occur on pipe margins.
- Adiabatic crystallization (due to heat loss) of the underlying (diorite porphyry) intrusion.

Exploration Program

Exploration & Development Program

Uiseong Program & Budget – Year 1

Geological Surveys:

- Geological Mapping & Sampling at 1:5,000 scale
- Preliminary 3D Geological Model Completed by GeoEconomics

Geophysical Survey:

Drone UAV Airborne Magnetometer & VLF-EM Survey (US\$50,000)

Phase 1 Drilling Program – Dongil:

- Designed to Check/Confirm Historical Drill Results (US\$900,000)
 - 300m hole spacing, 12 holes (2,800m HQ core)
- Evaluate Deposit Geology & Mineralization orientation & style

Phase 2 Resource Definition Drilling Program - Dongil:

- Establish Field Depot, Equipment purchases (US\$500,000)
- Phase 2 Resource Definition Drilling (US\$1,000,000)
 - 50m hole spacing, 25 holes (4,900m RC-HQ core)
- DGPS Surveying of Drill Sites (including Historical & Phase 1 Drill Sites)
- JORC Resource Estimate (US\$50,000)

Metallurgical Testwork - Dongil:

- Complete Detailed Metallurgical Studies on Drill Core (US\$120,000)
- Evaluate Processing Options (Gravity, Flotation, Leach, Sorter Technologies)
- Locked Cycle Testwork (US\$200,000)

Geotechnical Studies - Dongil:

- Geotechnical Studies routinely undertaken on HQ Drill Core
- Evaluate Sustainable Mining with Drilling Method

Exploration & Development Program

Haman & Goseong Programs – Year 1 & 2

Geological & Geophysical Surveys Haman & Goseong:

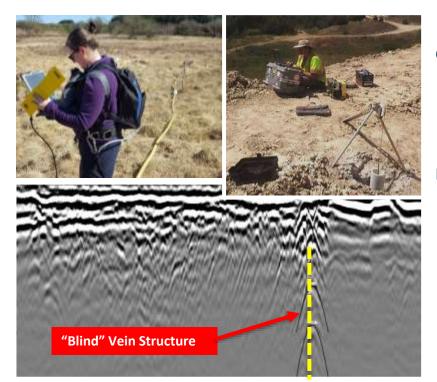
- Geological Mapping & Sampling at 1:5,000 scale
- Drone Airborne Magnetometer & VLF-EM Surveys (US\$60,000)

Exploration Target Drilling - Haman:

- Phase 1 Check/Confirmation Drilling of Historical Drill Results (US\$650,000)
 - Jaeilgunbuk, 2 holes (600m HQ core)
 - Oguk, 1 hole (300m HQ core)
 - Gilgok, 2 holes (600m HQ core)
 - Bukgok, 1 hole, (300m HQ core)
 - Ebisu, 1 hole (300m HQ core)
 - Gunbuk, 2 holes (600m HQ core)

Resource Definition Drilling:

- Evaluate results from Haman Phase 1 Drilling Programs
- Phase 2 Drilling of best Exploration Target (US\$1,000,000)
 - 12-15 holes, 3,550m RC-HQ core
 - DGPS Surveying of Drill Sites (including historical drill sites)
- Preliminary JORC Resource Estimate (US\$50,000)

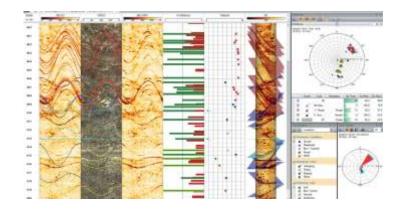

Exploration Target Drilling - Goseong:

- Phase 1 Check/Confirmation Drilling of Historical Drill Results (US\$650,000)
 - Samjeon, 2 holes (600m HQ core)
 - Samsanjaeil South, 2 holes (600m HQ core)
 - Goseong/Samsan/Seongji, 2 holes (600m HQ core)

Vein Mapping Technologies

Narrow Vein Mapping Technologies

Acoustic/Optical Borehole Televiewer:

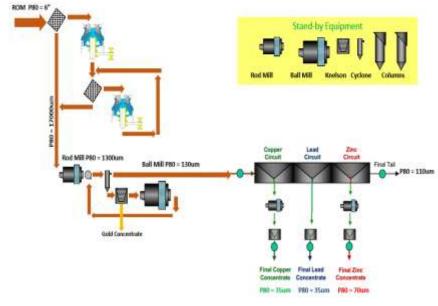

- Lowered by winch into Drill Holes after completion
- Drill Hole Orientation Survey is highly accurate
- Sonic pulses transmitted and return signal recorded
- Vein, RQD, Fracture & Joint Orientations Confirmed insitu
- Engineering Data collected evaluated for SMD operation

Ground Penetrating Radar:

- Rough Terrain Antenna "snake" dragged through jungle
- Radio signals Transmitted
- Reflected Pulse Return signal Recorded
- "See the Vein" within Bedrock below Soil-Colluvium "Cover"

Diamond Core & RC/DTH Drill Holes:

- Orientated Core used to Confirm Vein Structure
- Geology, RQD, Fractures, Joints, Hardness, Strength Data
- Geochemical Assaying of Vein & Alteration halo
- Engineering Data evaluated for SMD operation
- Geo-Metallurgical Data evaluated for Mill operation
- Resource Estimation



Exploration & Development Program

Uiseong Program & Budget – Year 2

Preliminary Economic Assessment:

- Resource Estimate JORC Compliant (US\$1.2M)
- Metallurgical Flow Sheet (US\$500,000)
- Complete Preliminary Economic Assessment Report (US\$200,000)
- Review Results & Recommendations
- Continue Feasibility Studies

Environmental Social Impact Assessment:

- Commence 12-Month, 4-Seasons "Baseline" Studies (US\$400,000)
- Permit to Mine Application prepared & lodged (US\$100,000)

Bulk Trial Mining Study:

- Sustainable Mining by Drilling
 - On-site evaluation of Pile Top RCD Drill
 - Pilot Plant
- Conventional Mining Evaluation

Mine Engineering Studies:

- Development Studies (US\$100,000)
 - Optimization Studies
 - Satellite Mine Options
- Drone UAV High-Res 3D LIDAR-Photogrammetry Survey (US\$50,000)
- Preliminary Site Engineering Studies (US\$100,000)
- Review Results & Recommendations
- Continue Feasibility Studies

Environmental & Social Impact Assessment

EISA Process & Mine Permitting

Adopt Environmental "Best Practice":

- Non-Toxic Glycine Lixiviant
- Acid Flows Contained within Vats
- Recovery & Recycle use of Glycine & Process Water
- Low Energy Consumption
- No Tailings Dams Paste Backfill of RCD Drill holes
- Rapid Rehabilitation & Revegetation of RCD Drill sites

Community Engagement Concepts:

- KME experience working with Local Government & Community
- No Tailings Community Acceptance for Mining
- School Facilities, Scholarships, Local Community Projects
- Local Business Supply Contracts
- Land Acquisition or Long Term Land Lease if required

Project Description: Project Characterization & Background Document, Scoping Study Report. **Draft Assessment Plan (DAR)**:

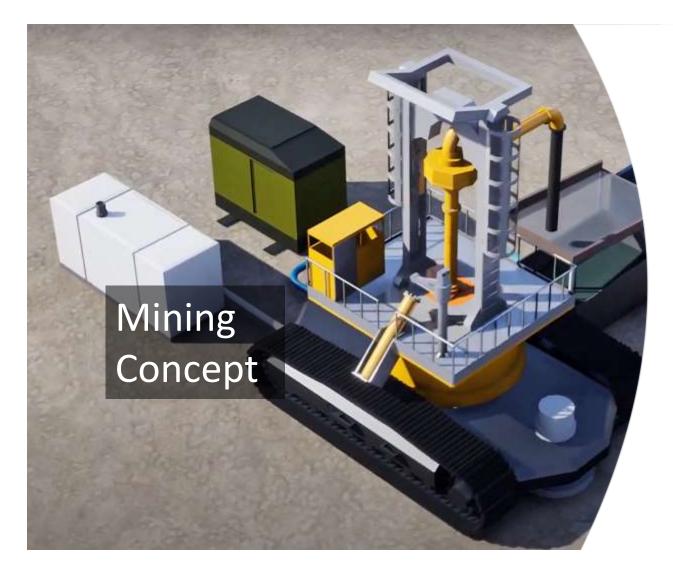
- Qualified ESIA Agent selected & appointed.
- ESIA Committee established..
- Identify Stakeholders, including Landowners, Local Community, Local Government, Provincial Government, Regulatory Agencies involved in ESIA process.
- Key Project Issues, Regulatory Responsibilities, Stakeholder engagement, Develop Regulatory Review & Tracking Mechanisms, Identification of Local Restrictions, Habitat Conservation Protection Zones, Cultural Heritage.
- Identify additional Technical Issues to meet International Best Practice.
- Development of Management Plan, Prevention & Mitigation Measures.
- Preparation of Draft Assessment Report (DAR). Submission of DAR to Stakeholders.

Baseline Studies

- Baseline Studies designed. Background data collected over 4 seasons (12-month period):
 - Surface Hydrology.
 - Groundwater.
 - Air Quality: Dust, Noise.
 - Fauna & Flora.
 - Local Community Household Survey.
- Data Analyzed & Social Impact Evaluation.

Stakeholder Engagement, Group Discussion & Public Consultation

- Regulatory Agencies involved in ESIA process.
- Project Background Information Document distributed to Local Community for comment.
- Community Liason Office. 30-day Public Notification Awareness Campaign.
- Group Discussion Meeting.


Public Hearing

- Comments from Stakeholders.
- Comments from Local Community.

Revision of the DAR & Finalization of the ESIA

- Collection of Opinions on the DAR.
- Collect Opinions from Public Hearing.
- Review of ESIA by Korea Environmental Institute.
- Recommendations from ESIA Committee.

Vein Mapping & Directional Steering Technology

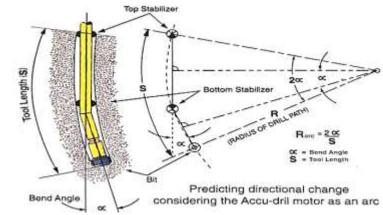
Novamera Inc Technology

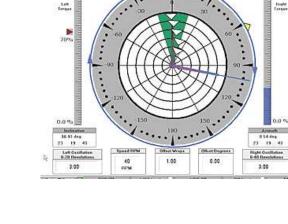
Borehole

Vein interface

contact

Real-time


borehole


imaging

- Pilot Hole drilled into Vein with Borehole Radar Probe attached to NQ Core Barrel 1.
- Subsurface Imaging Radar & Direction Locator guides the Pilot Hole 2.
- Survey Tool Measures Continuous Hole Orientation (Azimuth, Dip & Depth) 3.
- Borehole Radar Imaging "Sees the Vein" by Varying Radio Signal Frequency 4.
- 5. Directional Steering Motor Tool - steers the Pilot Hole to "Follow the Vein"
- **Objective is to keep the Pilot Hole midway between Hangingwall and Footwall** 6.

Up to

100.0 %

150.0

100.0.%

Pile Top RCD Drill Rig

Principle of Operation

Used in Civil Engineering - Foundation Piles

Reverse Circulation Drilling method ("RCD")

Standard Equipment for Pile Top RCD Operation:

- Power Pack
- Air Compressor
- 1 Driller + 2 Offsiders
- Wireless Remote Monitoring & Control

Pile Top RCD Operation Sequence:

- 1. RCD Drill positioned over Pilot Hole
- 2. Bottom Hole Assembly attached to Power Swivel
- 3. Water Pumped into the Hole and Drilling proceeds
- 4. Compressed Air injected through the Drill Pipe
- 5. Solid Cuttings enter the Cutting Head-Suction opening
- 6. Air-Liquid flow "Lifts" Cuttings to surface inside Drill Tube
- 7. Drill Rod String is extended by adding 3m Drill Pipe runs
- 8. Stabilizers are fitted to support the Drill String
- 9. Drill Cuttings de-watered by Cyclone and Mud Tanks
- 10. Water Recycled by Mud Tanks for Re-use by RCD Drill
- 11. Drill Tube recovered
- 12. RCD Drill moved to next hole

KOREAN METALS EXPLORATION

Pile Top RCD Drill Rig

Drill Bit Cutter Technology

Novamera has 8 Custom Innovation Patents pending:

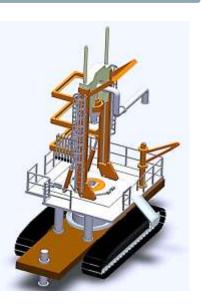
Near Borehole Imaging Tool ("NBIT") Developments:

- Directionality improvements to Reflected Return Pulse signal
- Integrate Survey Tool into GPR & Wireline Tool

Drill Bit Developments:

- "Stinger" follows pilot hole trace within the Vein
- Deviation of 1° per 3m run with Drill Tube "Joiner"

- Hole Drill Bit Diameter 1.0 6.8m is Varied to suit Vein width
- Number of Roller Bit Cutters fitted depends on Hole Diameter
- Cutter Selection depends on Rock "Drillability" Parameters:
 - Hardness, Abrasivity, Tensile & Compressive Strength
- Tungsten-Carbide Bit & Matrix Metallurgy Continuous Development
- Manufactured in South Korea, Germany, Sweden, UK & Canada
- Series 13 Roller Bit Cutters: Button, Tooth, Disc or Universal Types


Sustainable Mining by Drilling

Sustainable Mining by Drilling Operation

Mobile Crawler Track-Mounted Design:

- Engineering Drawings prepared (Novamera)
- Power Pack, Air Compressor
- Tracked Carrier with Jib Crane to support
- 1 Driller + 2 Offsiders
- Wireless Remote "Off Site" Monitoring & Control

Envisaged Sustainable Mining by Drilling Operation:

- 1. Bottom Hole Assembly is attached to Power Swivel
- 2. Water pumped into the Hole and Drilling proceeds
- 3. Drill Cuttings "air-lifted" to surface as a slurry
- 4. Solids dewatered & collected
- 5. Transported to mill by pumping or truck
- 6. Water is recycled for re-use in Drilling Operation
- 7. Drill Bit and Drill Tube recovered when EOH reached
- 8. RCD Drill Rig moves onto next Drill Site
- 9. A 2-4m "Stope" left between holes is "Mined" later
- 10. RCD Hole is backfilled with Waste and Mill Tailings
- 11. Rehabilitation & Revegetation of Drill Site commences

8

Milling Concept

Beneficiation of SMD Drill Cuttings

KOREAN METALS

Pre-Concentration Technologies Identified

-2mm Drill Cuttings

SMD Drill Cuttings provide direct "Run-Of-Mine" Feed:

- Real Time Assaying of Cuttings Waste or Ore streams
- Waste is returned to RCD Hole void
- -2mm can be Tertiary Crushed by VSI/Cone Crusher

Classifier Plant (Wet):

Alljig, Floatex Hydrosizer, Reflux Classifier, Hydrosort

Dense Media Separation Plant (Wet):

- 2-1mm processed to Concentrate Sulphide Ore Feed
- Sepro Condor

Gravity Concentration Plant (Wet):

- Imm Screened Slurry processed to Recover GR-Gold
- Gekko IPJ, Falcon, Knelson Concentrators

Advantages:

- Low Capital & Low Operating Costs
- Highly Effective in "Up-Grading" Mill Feed
- Early Rejection of Waste Minimize Dilution & Handling
- Waste is Returned to the RCD Hole void as Backfill
- Water is Recycled for re-use
- Fully Automated, Compact Size & Easily Transported
- Suitable for Satellite Mining Operations

Pre-Concentration & Flotation

Pre-Concentration & Flotation of Sulphides

Sepro Condor Dense Media Separator

Collects -2mm heavies (Sulphides); Rejects light (Waste)

Flash Flotation Pre-Concentration Plant Options

- Processes the Gravity Concentration Circuit Overflow
- Pre-Concentrate Sulphide Ore
- Increases Feed Grade to VAT Leach Plant

Eriez Hydrofloat[™] Separator

Efficient Recovery of coarse Sulphides

OutuTec C-Plant Flotation

- "Turn Key" Flexible Small Plant Design
- Flotation & Launder Modules
- OutuTec Courier[®] Analyzer Instant Assays of Flotation products
- High level of Automation & On-Site Troubleshooting possible
- Reduced EPC Costs
- Minimal Civil Engineering Site Works
- Pre-Commissioning done before Delivery
- Low Capital Cost
- Compact Size; Containerized for easy Transport
- Mobile Plant Ideal for Satellite Mine Operations

Milling Technology

Continuous Vat Leach ("CVL") Plant

"Turn Key" 50-100tph Capacity Plant (Innovat MPS)

- Plant Simplicity, Value for Money
- Simple to Operate only limited Operator Training required
- Low Capital Cost
- Low Operating Cost (low electrical power requirement)
- Compact Size Minimal Impact on Environment

GlyLeach™ Process

Developed by Mining & Process Solutions Pty Ltd (Perth)

- Glycine amino acid Lixiviant
- Readily Available & Low Cost
- Suitable for Treating both Cu-Au-Ag Sulphide & Oxide Ores
- Covellite Copper Concentrate product sold to Refinery
- Recovery of Pb & Zn is possible
- Au & Ag Dore produced by conventional Electrowin & "Batch" Gold Pour
- "Sighter Testwork" by MPS Perth

Environmental Best Practice – Community Acceptance

- Non-Toxic
- Acid Flows Contained within Vats
- Recovery & Recycle use of Glycine
- Reclaim & Recycle of Process Water
- Low Energy Consumption (water pumps, conveyors)
- No Tailings Dams Paste Backfill of RCD holes

Water Recycling & Waste-Tailings Disposal

RCD Hole Void:

Used as a Temporary Water Storage Facility for the next RCD Drilling Operation

Waste Cuttings & Mill Tailings (Wet or Dry) is Returned to the RCD Hole Void:

- De-watered by De-Sander or Filter Press
- Returned to the RCD Hole as Dry, Moist or Wet Backfill
- Settling of Wet Tailings is aided by "Columnar" configuration of Hole & Water Currents
- Precipitation by Mineral Turbidity can be Expedited by addition of Flocculants/Coagulants
- Water is Clarified and Recovered from Top of Column
- Water is Re-used in Drilling & Milling operations

Paste Tailings can be Backfilled in RCD Hole void:

Paste Backfill can also be Cemented/Neutralized if needed

Rehabilitation of Drill Site & Mine Closure

SMD operation facilitates Rapid Restoration of the "mined path" above Veins

Rehabilitation commences after the RCD Drill moves onto next Drill Site:

- Stockpiled Topsoil is Replaced on the Drill Site
- Dressing, Seeding & Sapling Planting commences
- Rehabilitation facilitated using existing Water Storage Ponds

Water Ponds used as Dams & Wildlife Habitat after Mine Closure

Contact:

BRISBANE OFFICE

Korean Metals Exploration Pty Ltd 21 Pandian Crescent Bellbowrie QLD. 4070. Australia

Email: chris@koreanmetals.com

Phone: +61 413 314 750

SEOUL OFFICE

Shin Han Mine Inc Bangi-Dong, Acroffice Suite 413 4F Olympic-Ro 30 Gil Seongpa-Gu Seoul Republic of Korea

Email: kim@koreanmetals.com

Phone: +82 1099314934

www.koreanmetals.com